【高校数学】数Ⅲ-33 2次曲線の平行移動② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-33 2次曲線の平行移動②

問題文全文(内容文):
次の2次曲線の焦点を求めよ.

①楕円$4x^2+9y^2=24x$

②放物線$y^2-2y+8x+9=0$

③双曲線$9x^2-4y^2-18x+16y-43=0$
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2次曲線の焦点を求めよ.

①楕円$4x^2+9y^2=24x$

②放物線$y^2-2y+8x+9=0$

③双曲線$9x^2-4y^2-18x+16y-43=0$
投稿日:2017.05.18

<関連動画>

【数C】【平面上の曲線】楕円x²/8+y²/4=1上の点(2,√2) を通り、この楕円の焦点を焦点とする双曲線の方程式を求めよ。また、双曲線の漸近線の方程式も求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
楕円 $\displaystyle \frac{x^2}{8}+\frac{y^2}{4}=1$ 上の点 $(2,\ \sqrt{2})$を通り、
この楕円の焦点を焦点とする双曲線の方程式を求めよ。
また、双曲線の漸近線の方程式も求めよ。
この動画を見る 

【数Ⅲ】2次曲線:点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが円$x²+y²=4$上を動く。yだけを$\dfrac{1}{2}$した点Qの軌跡を求めよ。
この動画を見る 

【数C】【平面上の曲線】2点 A(- 2, 0) , B(2, 0) と楕円 x²/36 + y²/9 = 1上の点Qでできる△AQBの重心Pの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2$ 点 $\mathrm{A}(-2,\ 0),\ \mathrm{B}(2,\ 0)$と、

楕円 $\displaystyle \frac{x^2}{36}+\frac{y^2}{9}=1$ 上の点$\mathrm{Q}$でできる

$\triangle \mathrm{AQB}$ の重心$\mathrm{P}$の軌跡を求めよ。
この動画を見る 

【数Ⅲ】極方程式をゼロからはじめましょう

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極方程式を基礎から解説します
この動画を見る 

【数C】【平面上の曲線】2次曲線3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $ C \mathrm{:} \ x^2 = 4y$ の焦点を $\mathrm{F}$、$C$ 上の点を $\mathrm{P}$ 、 $\mathrm{P}$ から準線に下した垂線を $\mathrm{PH}$ とする。 $\triangle \mathrm{PFH}$ が正三角形になるとき、 $\mathrm{P}$ の $x$ 座標 $a$ を求めよ。また、$ a \gt 0$ のとき、辺 $\mathrm{FH}$ と $C$ の交点 $\mathrm{Q}$ の $x$ 座標 $b$ と $\triangle \mathrm{PFQ}$ の面積 $S$ を求めよ。
この動画を見る 
PAGE TOP