京都大 関数 - 質問解決D.B.(データベース)

京都大 関数

問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$

すべての実数$x$にたいして不等式

$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ

出典:2014年京都大学 過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$

すべての実数$x$にたいして不等式

$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ

出典:2014年京都大学 過去問
投稿日:2019.07.23

<関連動画>

微分方程式⑪-2【非線形2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$(y+1)\dfrac{d^2y}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$y\dfrac{d^2y}{dx^2}=1-\left(\dfrac{dy}{dx}\right)^2$
この動画を見る 

【高校数学】数Ⅲ-98 対数関数の導関数①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$

次の関数を微分せよ。

⑤$y=\log 6x$

⑥$y=\log(3x^2+1)$

⑦$y=x\log 2x$

⑧$y=\log_{10} (1-2x)$

⑨$y=\log \vert x^2-1 \vert$

⑩$y=\log_3 \vert x+5 \vert$
この動画を見る 

【数Ⅲ】微分法:対数微分、この計算式をどうしますか?

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
この動画を見る 

【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。

y= (x+1)²/((x+2)³(x+3)⁴)
以下、略

次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略

lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る 

高専数学 微積II #19(2) 3次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sin 2x$の$x=0$における
3次近似式を求めよ.
この動画を見る 
PAGE TOP