福田の数学・入試問題解説〜東北大学2022年理系第1問〜不定方程式の整数解の個数 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第1問〜不定方程式の整数解の個数

問題文全文(内容文):
Kを3より大きい奇数とし、$l+m+n=K$を満たす正の奇数の組(l,m,n)
の個数Nを考える。ただし、例えば、$K=5$のとき、$(l,m,n)=(1,1,3)$
と$(l,m,n)=(1,3,1)$とは異なる組とみなす。
(1)$K=99$のとき、Nを求めよ。
(2)$K=99$のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を
求めよ。
(3)$N \gt K$を満たす最小のKを求めよ。

2022東北大学理系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Kを3より大きい奇数とし、$l+m+n=K$を満たす正の奇数の組(l,m,n)
の個数Nを考える。ただし、例えば、$K=5$のとき、$(l,m,n)=(1,1,3)$
と$(l,m,n)=(1,3,1)$とは異なる組とみなす。
(1)$K=99$のとき、Nを求めよ。
(2)$K=99$のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を
求めよ。
(3)$N \gt K$を満たす最小のKを求めよ。

2022東北大学理系過去問
投稿日:2022.03.15

<関連動画>

【数学ゴールデン】2巻と5巻で紹介された整数問題を解いてみた #数学ゴールデン #数学オリンピック #整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
黒板に1以上100以下の整数が1つずつ書かれている。
黒板から整数$a,b$を選んで消し、新たに$a^2b^2+3$と$a^2+n^2+2$の最大公約数を書くという操作を繰り返し行う。
黒板に書かれている整数が1つだけになったとき、その整数は平方数でないことを示せ。
$a,2,3,4,・・・,99,100$
$2^23^2+3=39$と$2^2+3^2+2=15$の最大公約数は3
残り1つになった整数は平方数でない
この動画を見る 

【整数問題】難関大が好きなパターン!範囲を絞り込め!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$abcd=a+b+c+d$を満たす正の整数$a,b,c,d$をすべて求めよ。
この動画を見る 

福田の数学〜一橋大学2025文系第1問〜正の約数の個数と関数の最大値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

正の整数$n$に対し、$n$の正の約数の個数を

$d(n)$とする。

たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、

$d(6)=4$である。また、

$f(n)=\dfrac{d(n)}{\sqrt n}$

とする。

(1)$f(2025)$を求めよ。

(2)素数$p$と正の整数$k$の組で

$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。

(3)$f(n)$の最大値と、そのときの$n$を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

図形の性質 図形の性質の基本②【中学受験のドラえもんがていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCの内心をIとし、3辺BC、CA、ABに関してIと対称な点をそれぞれP,Q,Rとする。Iは三角形PQRについてどのような点か?
三角形ABCの内心をI、角Aの内部の傍心をI₁とする時、次の問いに答えよ。
(1)角IBI₁の大きさを求めよ。
(2)三角形ABCの外接円は線分II₁を二等分することを証明せよ。
AB=ACである二等辺三角形ABCの頂点Aから辺BCに下ろした垂線をADとする。
角Bの内部の傍接円IBの半径はADに等しいことを証明せよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Aの袋には白玉3個と赤玉2個、Bの袋には白玉2個と赤玉3個、Cの袋には白玉1個と赤玉4個が入っている。1個のさいころを投げて1の目が出たらAの袋を、2,3の目が出たらBの袋を、4~6の目が出たらCの袋を選び、1個の玉を取り出すものとする。取り出された玉が白玉であったとき、それがCの袋から取り出された玉である確率を求めよ。
この動画を見る 
PAGE TOP