大学入試問題#202 横浜国立大学 定積分 - 質問解決D.B.(データベース)

大学入試問題#202 横浜国立大学 定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
投稿日:2022.05.19

<関連動画>

大学入試問題#66 横浜国立大学(2003) 置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x+1}{(x^2+x^1)^2}\ dx$を計算せよ。

出典:2003年横浜国立大学 入試問題
この動画を見る 

#日本工業大学(2021) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} log_2\ x\ dx$

出典:2021年日本工業大学
この動画を見る 

大学入試問題#477「もうすこし工夫できそう」 山形大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{e}}^{1} (1+\displaystyle \frac{1}{x})log\ x\ dx$

出典:2016年山形大学 入試問題
この動画を見る 

【高校数学】毎日積分54日目 実践編⑤回転体シリーズ~斜めで、切り取って、最短距離のフルコース~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内において、連立不等式
$\frac{x^2}{4}+y^2≦1 , |z|≦6$
により定まる領域を$V$とし、2点$(2,0,2),(-2,0,-2)$を通る直線を$l$とする。
(1)$|t|≦2\sqrt2$を満たす実数tに対し、点$P_t(\frac{t}{\sqrt{2}},0,\frac{t}{\sqrt{2}})$を通り$l$に重直な平面を$H_t$とする。また、実数$\theta$に対し、点$(2\cos\theta,\sin\theta,0)$を通り$z$軸に平行な直線を$L_{\theta}$とする。$L_{\theta}$と$H_t$との交点の$z$座標を$t$と$\theta$を用いて表せ。
(2) $l$を回転軸に持つ回転体で$V$に含まれるものを考える。このような回転体のうちで体積が最大となるものの体積を求めよ。
【東京工業大学 2018】
この動画を見る 

#11 鬼の定積分 By英語orドイツ語シはBかHか さん

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
この動画を見る 
PAGE TOP