大学入試問題#169 愛知教育大学(2013) 区分求積法 - 質問解決D.B.(データベース)

大学入試問題#169 愛知教育大学(2013) 区分求積法

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。

出典:2013年愛知教育大学 入試問題
チャプター:

04:02~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。

出典:2013年愛知教育大学 入試問題
投稿日:2022.04.14

<関連動画>

信州大 三次方程式の解の極限値

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$

(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ

(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ

出典:1998年信州大学 過去問
この動画を見る 

東工大 末尾の0の個数問題

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$

$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.

1991東工大過去問
この動画を見る 

福田の数学〜旧・東京工業大学、東京科学大学2025理系第1問〜逆関数の定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$$\quad$関数$f(x)$を$x\geqq 0$に対して

$f(x)=x\log(1+x)$と定める。

(1)不定積分$\displaystyle \int x\log(1+x)dx$を求めよ。

(2)$y=f(x) \quad (x\geqq 0)$の逆関数を

$y=g(x) \quad (x\geqq 0)$とする。

また、$a,b$を$g(a)=1,g(b)=2$となる

実数となる。

このとき定積分$I=\displaystyle \int_{a}{b} g(x)dx$の値を求めよ。

(3)関数$P(x)$を$x\geqq 0$に対して

$P(x)=\displaystyle \int_{0}^{x}\sqrt{1+f(t)dt}$と定める。

このとき、$y=P(x)$について、

定義域を$x\geqq 0$とする逆関数

$y=Q(x)$が微分可能であることは

説明なしに認めてよい。

関数$R(x)$を$x\geqq 0$に対して

$R(x)=\displaystyle int_{0}^{P(x)}\dfrac{1}{Q'(\upsilon)}$と定めるとき、

$R(x)$を求めよ。

図は動画内参照

$2025$年東京科学大学(旧・東京工業大学)理系過去問題
この動画を見る 

#21 数検1級1次 過去問 無限級数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^\infty\ \displaystyle \frac{k}{1+k^2+k^4}$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 
PAGE TOP