【高校数学】数Ⅰ-14 √(ルート)シリーズ②(因数分解とのコラボ編) - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-14 √(ルート)シリーズ②(因数分解とのコラボ編)

問題文全文(内容文):
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$

◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$

◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
投稿日:2014.03.29

<関連動画>

早稲田(政経) 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。
この動画を見る 

【高校受験対策】数学-死守20

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.

②$(- 4) ^ 2 \times (- 3)$を計算しなさい.

③$(6a - 15b) \div 3$を計算しなさい.

④$(2x - 1)(x + 3)$を展開しなさい.

⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.

⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.

⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.

⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.

ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$

⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.

(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.

(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.

⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,

(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.

(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」

図は動画内参照
この動画を見る 

【#10】【因数分解100問】基礎から応用まで!(91)〜(95)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(91)$(3x-8)(16x+9)$
(92)$(25x-16)(4x+5)$
(93)$3(a+b)(b+c)(c+a)$
(94)$24xyz$
(95)$(x+y+2)(x-y-2)(x+y-2)(x-y+2)$
この動画を見る 

大阪大 絶対値のついた二次関数と直線の面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
この動画を見る 

一文字削除からの判別式【2014年早稲田大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。

2014早稲田大過去問
この動画を見る 
PAGE TOP