#62.5 #数検1級1次 #有理化 #Shorts - 質問解決D.B.(データベース)

#62.5 #数検1級1次 #有理化 #Shorts

問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ

出典:数検1級1次
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ

出典:数検1級1次
投稿日:2024.04.13

<関連動画>

16和歌山県教員採用試験(数学:6番 対数の不等式)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$2\log_3 x-4\log_x 27 \leqq 5$を解け.
この動画を見る 

2023高校入試解説23問目  二乗の和で表せ②昭和学院秀英(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$13^2 + x^2 = y^2$となる自然数(x,y)を全て求めよ

2023昭和学院秀英高等学校
この動画を見る 

図形と計量 多角形【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径10の円に内接する正n角形の1辺の長さを求めよ。また,円の中心から正n角形の1辺に下ろした垂線の長さを求めよ。
この動画を見る 

共通テスト数学1A_第1問を簡単に解く方法教えます

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る 

17東京都教員採用試験(数学 1-2 方程式)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$x^3+\frac{1}{x^3}=0$のとき、$x+\frac{1}{x}$の値を求めよ。
この動画を見る 
PAGE TOP