#62.5 #数検1級1次 #有理化 #Shorts - 質問解決D.B.(データベース)

#62.5 #数検1級1次 #有理化 #Shorts

問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ

出典:数検1級1次
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ

出典:数検1級1次
投稿日:2024.04.13

<関連動画>

東京医科大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{30\sqrt{a}-319\sqrt{b}}=\sqrt a-\sqrt b$であるとき、$a,b$の値を求めよ。

東京医科大学過去問
この動画を見る 

【高校数学】因数分解のまとめ~どこよりも丁寧に~【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\,bc(b-c)+ca(c-a)+ab(a-b)
$
$\displaystyle
(2)\,ab(a+b)+bc(b+c)+ca(c+a)+2abc
$
$\displaystyle
(3)\,(a+b)(b-c)(a-c)-abc
$
$\displaystyle
(4)\,a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)
$
$\displaystyle
(5)\,a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc
$
$\displaystyle
(6)\,2a^2b-3ab+a-2b-2
$
この動画を見る 

【数Ⅰ】数と式:間違える人続出!やっかいな1次不等式! -2<x<5 -7<y<4のとき、x-yの値の範囲を求めよ。

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$-2<x<5,-7<y<4$のとき、$x-y$の値の範囲を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(3)〜3次関数と絶対不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)a,bを実数とし、実数xの関数f(x)をf(x)=$x^3$+$ax^2$+$bx$-6とおく。
方程式f(x)=0はx=-1を解に持ち、f'(-1)=-7である。
(i)a=$\boxed{\ \ オ\ \ }$, b=$\boxed{\ \ カ\ \ }$である。
(ii)cは正の実数とする。f(x)≧3$x^2$+4(3c-1)$x$-16がx≧0において常に成立するとき、cの値の範囲は$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

2021 灘高校 最初の一問

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2\sqrt 2 -3)^2=$
$\sqrt{\sqrt{(10-7\sqrt 2)^2} - \sqrt{(7-5\sqrt 2)^2} }$

2021灘高等学校
この動画を見る 
PAGE TOP