福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
投稿日:2021.07.01

<関連動画>

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

京都大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ

出典:2017年京都大学 過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る 

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉$p$個,青玉$q$個,白玉$r$個
合計$n$個を1列に並べてできる順列の総数が
$\frac{n!}{p!f!r!}$であることを証明せよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。

$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$

この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。

(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。

(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。

(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。

(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP