福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

問題文全文(内容文):
${\Large\boxed{3}}$ 
(1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率$\dfrac{1}{4}$で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき
$(\textrm{a})$2つの面が白色、2つの面が黒色になる最小の試行回数は$\boxed{\ \ アイ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ キク\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率$\dfrac{1}{6}$で選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき
$(\textrm{a})$3つの面が白色、3つの面が黒色になる最小の試行回数は$\boxed{\ \ スセ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ テト\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}$である。

慶應義塾大学2021年環境情報学部第3問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 
(1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率$\dfrac{1}{4}$で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき
$(\textrm{a})$2つの面が白色、2つの面が黒色になる最小の試行回数は$\boxed{\ \ アイ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ キク\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率$\dfrac{1}{6}$で選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき
$(\textrm{a})$3つの面が白色、3つの面が黒色になる最小の試行回数は$\boxed{\ \ スセ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ テト\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}$である。

慶應義塾大学2021年環境情報学部第3問
投稿日:2021.07.01

<関連動画>

【受験対策】  数学-確率①

アイキャッチ画像
単元: #数A#場合の数と確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
大小2つのさいころを同時に1回投げ、大きいさいころの出た目の数をa、小さいさいころの出た目の数をbとし、2つの数a,bの積をPと表すことにします。

①2aー3b=1となる確率は?

②Pの値が3の倍数となる確率は?

③3a-5bの値が自然数となる確率は?

④$\sqrt{ P }$の値が整数になる確率は?
この動画を見る 

完全順列(モンモールの問題)【高校数学】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#確率
指導講師: 受験メモ山本
問題文全文(内容文):
完全順列(モンモールの問題)の説明動画です
この動画を見る 

【高校数学】  数A-21  確率③ ・ さいころ編 Part.3

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎1個のさいころを6回投げるとき、次の場合の確率は?

①奇数の目がちょうど3回でる。
②2以下の目がちょうど4回でる。
③3以上の目がちょうど1回でる。
この動画を見る 

福田のわかった数学〜高校1年生086〜確率(6)じゃんけんの確率(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(6) じゃんけん(2)
4人でじゃんけんをして負けたもの
から抜けていく。3回で1人の勝者
が決まる確率を求めよ。 
この動画を見る 

【数A】【場合の数と確率】期待値、このゲームは得?損? ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉2個、黒玉5個、赤玉3個が入っている袋から玉を1個取り出し、白玉が出たら1000円、黒玉が出たら100円もらえ、赤玉が出たら800円を支払うゲームがある。ゲームの参加料が0円であるとき、このゲームに参加することは得であるといえるか。
この動画を見る 
PAGE TOP