福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円

問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。

2020慶應義塾大学総合政策学部過去問
単元: #数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。

2020慶應義塾大学総合政策学部過去問
投稿日:2023.02.06

<関連動画>

整数の良問だよ!やや難?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは非負整数である.
$ a!+5^b=7^c $を満たす(a,b,c)をすべて求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第3問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$2$枚の硬貨を同時に投げることを試行という。

各回の試行において、座標平面上の点$P$は

次の$(A),(B),(C)$に従って座標平面を移動する。

$(A)$ 点$P$が$(x,y)$にあるとき、表が$2$枚出れば

$(x+1,y+\sqrt3)$に移動する。

$(B)$ 点$P$が$(x,y)$にあるとき、裏が$2$枚出れば

$(x+1,y-\sqrt3)$に移動する。

$(C)$点$P$が$(1,\sqrt3)$にあるとき、

表と裏が$1$枚ずつ出れば

$(x-2,y)$に移動する。

例えば、点$P$が$(1,\sqrt3)$にあるとき、

裏が$2$枚出れば、点$P$は$(2,0)$に移動する。

(1)$1$回目の試行前に原点にある点$P$が、

$3$回目の試行後原点にある確率は

$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)$1$回目の試行前に原点がある点$P$が、

$3$回目の試行前に$y$軸上にある確率は

$\dfrac{\boxed{エ}}{\boxed{オ}}$

(3)$1$回目の試行前に原点がある点$P$が、

$5$回目の試行前に$x$軸上にある確率は

$\dfrac{\boxed{カキ}}{\boxed{クケコ}}$である。

(4)$1$回目の試行前に原点にある点$P$が、

$5$回目の試行後に$x$軸上にあるとき。

$8$回目の試行後に円$x^2+y^2=4$上にある

条件付き確率は$\dfrac{\boxed{サシ}}{\boxed{スセソ}}$である。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

【共通テスト】数学1A「場合の数・確率」の解法まとめ

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#その他#勉強法#その他#勉強法#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【共通テスト】数学1A「場合の数・確率」の解法を解説していきます。
この動画を見る 

福田の数学〜京都大学2025文系第1問(2)〜整数の割り算で割り切れる条件

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(2)$n^4+6n^2+23$が$n^2+n+3$で

割り切れるような正の整数$n$をすべて求めよ。

$2025$年京都大学文系過去問題
この動画を見る 

福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP