【数Ⅲ】積分法:置換積分の区間の取り方 - 質問解決D.B.(データベース)

【数Ⅲ】積分法:置換積分の区間の取り方

問題文全文(内容文):
置換積分の区間の取り方を解説します!
チャプター:

0:00 OP
0:23 置換積分の解き方
1:44 解法のどこが間違っているか見つけましょう
3:46 置換したときの区間の取り方

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
置換積分の区間の取り方を解説します!
投稿日:2021.08.17

<関連動画>

【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
この動画を見る 

【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る 

福田のおもしろ数学281〜不等式の証明と区分求積

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
すべての正の整数$n$について$(\frac{2n-1}{e})^{\frac{2n-1}{2}}\lt 1・3・5・・・(2n-1)\lt (\frac{2n+1}{e})^{\frac{2n+1}{2}}$が成り立つことを示せ。
この動画を見る 

#筑波大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} xe^{2x} dx$

出典:2019年筑波大学
この動画を見る 

10大阪府教員採用試験(数学:2番 微積)意外と沼にハマりがち

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#定積分#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣ $f(x) = \frac{x}{1+x^2}$
f(α)=f(β) , 0 < α < β のとき$\int_α^β \frac{x}{1+x^2}dx= log_β$を示せ
この動画を見る 
PAGE TOP