上智大 3次方程式 - 質問解決D.B.(データベース)

上智大 3次方程式

問題文全文(内容文):
$\alpha=\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}+6\right]^{\frac{1}{3}}-\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}-6\right]^{\frac{1}{3}}$
$\alpha$を解とする整数係数の3次方程式を1つ与えよ.

上智大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}+6\right]^{\frac{1}{3}}-\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}-6\right]^{\frac{1}{3}}$
$\alpha$を解とする整数係数の3次方程式を1つ与えよ.

上智大過去問
投稿日:2020.11.25

<関連動画>

2021慶應義塾大(理工) 式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^2+3\alpha+3=0$のとき,$(\alpha+1)^2(\alpha+2)^5=\Box$
$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組をすべて求めよ.

2021慶應(理)
この動画を見る 

福田のおもしろ数学165〜4次方程式を工夫して解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(x+2)^4$+$(x+1)^4$=17 を解け。
この動画を見る 

【数学】中高一貫校問題集 数学3 数式・関数編 111 実数解が存在することの証明

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。

(1)$b=\frac{a}{2}+2c$

(2)$a+c=0$

(3)aとcが異符号
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+6x+1)(x^2+5x)=2(x+1)^2$
この動画を見る 

方程式を解く。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(123.4-12.34) \div x =1.234$
この動画を見る 
PAGE TOP