式変形だけで解くことができますか?【数学 入試問題】【京都大学】 - 質問解決D.B.(データベース)

式変形だけで解くことができますか?【数学 入試問題】【京都大学】

問題文全文(内容文):
$\alpha,\beta$が$\alpha>0°,\beta>0°,\alpha+\beta<180°$かつ$ sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$ sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$\alpha>0°,\beta>0°,\alpha+\beta<180°$かつ$ sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$ sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
投稿日:2022.06.24

<関連動画>

気づけば一瞬!!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{11}\cos\dfrac{2\pi}{11}\cos\dfrac{3\pi}{11}\cos\dfrac{4\pi}{11}\cos\dfrac{5\pi}{11}$の値を求めよ.

この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 

三角関数の合成とか大丈夫ですか?【数学 入試問題】【慶應義塾大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$y=2cos^2\theta-\sqrt3 cos\theta sin\theta-sin^2\theta (0≦\theta≦\pi)$
の最大値とその時の$\theta$を求めよ。

慶應義塾大過去問
この動画を見る 

京都大 三角比 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$0 \leqq α < β< γ< 2\pi$
$cosα+cosβ+cosγ=0$
$sinα+sinβ+sinγ=0$である
β-α、γ-βの値を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-119 三角関数の合成②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \lt 2π$のとき、次の方程式を解こう。

①$\sqrt{ 3 } \sin x-\cos x=\sqrt{ 3 } $

②$2(\sin x + \cos x) -\sqrt{ 6 }$
この動画を見る 
PAGE TOP