問題文全文(内容文):
${\Large\boxed{1}}$ (2)座標空間に$2$点$A(0,-1,1)$と$B(-1,0,0)$をとる。線分$AB$を$z$軸の周りに
1回転してできる面と2つの平面$z=0,z=1$とで囲まれた部分の体積を求めよ。
2021早稲田大学教育学部過去問
${\Large\boxed{1}}$ (2)座標空間に$2$点$A(0,-1,1)$と$B(-1,0,0)$をとる。線分$AB$を$z$軸の周りに
1回転してできる面と2つの平面$z=0,z=1$とで囲まれた部分の体積を求めよ。
2021早稲田大学教育学部過去問
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (2)座標空間に$2$点$A(0,-1,1)$と$B(-1,0,0)$をとる。線分$AB$を$z$軸の周りに
1回転してできる面と2つの平面$z=0,z=1$とで囲まれた部分の体積を求めよ。
2021早稲田大学教育学部過去問
${\Large\boxed{1}}$ (2)座標空間に$2$点$A(0,-1,1)$と$B(-1,0,0)$をとる。線分$AB$を$z$軸の周りに
1回転してできる面と2つの平面$z=0,z=1$とで囲まれた部分の体積を求めよ。
2021早稲田大学教育学部過去問
投稿日:2021.05.30