福田の数学〜青山学院大学2025理工学部第3問〜三角関数のグラフと面積 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2025理工学部第3問〜三角関数のグラフと面積

問題文全文(内容文):

$\boxed{3}$

$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。

(1)$0\leqq x \leqq \pi$において、

曲線$y=f(x)$の概形を描け。

ただし、凹凸は調べなくてよい。

(2)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。

(3)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$で囲まれた図形の

面積$S$を求めよ。

$2025$年青山学院大学理工学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。

(1)$0\leqq x \leqq \pi$において、

曲線$y=f(x)$の概形を描け。

ただし、凹凸は調べなくてよい。

(2)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。

(3)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$で囲まれた図形の

面積$S$を求めよ。

$2025$年青山学院大学理工学部過去問題
投稿日:2025.08.01

<関連動画>

福田の数学〜北里大学2024医学部第1問(1)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2つの実数x,yは$x^2+y^2 \leqq 4,x \geqq 0 $を満たすとする。このとき、$3x+4y-3$の最小値は$\boxed{ ア }$、最大値は$\boxed{ イ }$である。また、$3x^2+4xy-3y^2$の最大値は$\boxed{ ウ }$である。
この動画を見る 

【数Ⅱ】三角関数:弧度法の考え方② -19π/6って第何象限でどんな形?!

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
弧度法の考え方に関して解説していきます.
この動画を見る 

【高校数学】三角関数のグラフの裏技~これを覚えればグラフは余裕~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数のグラフの裏技紹介動画です
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 円$C$:$x^2$+$(y-1)^2$=1 に接する直線で、$x$切片、$y$切片がともに正であるものを$l$とする。$C$と$l$と$x$軸により囲まれた部分の面積を$S$、$C$と$l$と$y$軸により囲まれた部分の面積を$T$とする。$S$+$T$が最小となるとき、$S$-$T$の値を求めよ。
この動画を見る 

19奈良県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
この動画を見る 
PAGE TOP