ただの4次方程式 その2 - 質問解決D.B.(データベース)

ただの4次方程式 その2

問題文全文(内容文):
これを解け.
$x^4+2x^2-400x=9991$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^4+2x^2-400x=9991$
投稿日:2021.04.21

<関連動画>

【数Ⅱ】解と係数の関係と対称式 α²+β²の値【複数の方法で理解を深める】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.\alpha^2+\beta^2を求めよ.$
この動画を見る 

大阪大の問題の背景 特に文系の人見てください

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.

2022大阪大過去問
この動画を見る 

京都大2021 素数という条件は必要か

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。

2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(1)〜指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)方程式$2^{x+2}$-$2^{2x+1}$+16=0 を解くと$x$=$\boxed{\ \ ア\ \ }$である。

2023立教大学理学部過去問
この動画を見る 
PAGE TOP