福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。

(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。

2021慶應義塾大学総合政策学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。

(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。

2021慶應義塾大学総合政策学部過去問
投稿日:2021.07.19

<関連動画>

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
(1)座標平面上で、次の二つの2次関数のグラフについて考える。
$y=3x^2+2x+3$ $\cdots$①
$y=2x^2+2x+3$ $\cdots$②

①、②の2次関数のグラフには次の共通点がある。

共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ア\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$である。

次の⓪~⑤の2次関数のグラフのうち、$y$軸との交点における接線の方程式
が$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$となるものは$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$y=3x^2-2x-3$
①$y=-3x^2+2x-3$
②$y=2x^2+2x-3$
③$y=2x^2-2x+3$
④$y=-x^2+2x+3$
⑤$y=-x^2-2x+3$

$a,b,c$を$0$でない実数とする。
曲線$y=ax^2+bx+c$上の点$\left(0, \boxed{\ \ オ\ \ }\right)$における接線をlとすると
その方程式は$y=\boxed{\ \ カ\ \ }x+\boxed{\ \ キ\ \ }$である。

接線$l$と$x$軸との交点の$x$座標は$\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$である。
$a,b,c$が正の実数であるとき、曲線$y=ax^2+bx+c$と接線lおよび直線
$x=\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$で囲まれた図形の面積をSとすると
$S=\displaystyle \frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }\ b^{\boxed{ス}}}$ $\cdots$③
である。

③において、$a=1$とし、$S$の値が一定となるように正の実数$b,c$の値を
変化させる。このとき、$b$と$c$の関係を表すグラフの概形は$\boxed{\boxed{\ \ セ\ \ }}$る。


$\boxed{\boxed{\ \ セ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

(2)座標平面上で、次の三つの3次関数のグラフについて考える。
$y=4x^3+2x^2+3x+5$ $\cdots$④
$y=-2x^3+7x^2+3x+5$ $\cdots$⑤
$y=5x^3-x^2+3x+5$ $\cdots$⑥

④、⑤、⑥の3次関数のグラフには次の共通点がある。
共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ソ\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ }$である。

$a,b,c,d$を$0$でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$\left(0, \boxed{\ \ ツ\ \ }\right)$における接線の
方程式は$y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$である。

次に、$f(x)=ax^3+bx^2+cx+d,$ $g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$とし、
$f(x)-g(x)$について考える。

$h(x)=f(x)-g(x)$とおく。$a,b,c,d$が正の実数であるとき、$y=h(x)$
のグラフの概形は$\boxed{\boxed{\ \ ナ\ \ }}$である。

$y=f(x)$のグラフと$y=g(x)$のグラフの共有点の$x$座標は$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$
と$\boxed{\ \ ノ\ \ }$である。また、$x$が$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$と$\boxed{\ \ ノ\ \ }$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\displaystyle \frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}$のときである。

$\boxed{\boxed{\ \ ナ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

福田の数学〜東北大学2023年文系第4問〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数f(x)に対して、座標平面上の2つの点P(x, f(x)), Q(x+1, f(x)+1)を考える。実数xが0≦x≦2の範囲を動くとき、線分PQがつうかしてできる図形の面積をSとおく。以下の問いに答えよ。
(1)関数f(x)=-2|x-1|+2に 対して、Sの値を求めよ。
(2)関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、曲線y=f(x)の接線で、傾きが1のものの方程式を求めよ。
(3)設問(2)の関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、Sの値を求めよ。

2023東北大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第2問〜対称式もどきの表す点の動く領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとするxy平面上に点A(1,-1)があり、点Bは$\overrightarrow{AB}$=(2$\cos\theta$, 2$\sin\theta$)(0≦θ≦2π)を満たす点である。Bの軌跡を境界線とする2つの領域のうち、点Aを含む領域を領域Cとする。ただし、領域Cは境界線を含む。
(1)点Bの軌跡の方程式は$\boxed{\ \ ナ\ \ }$である。
(2)点(x,y)がxy平面上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く範囲は式$\boxed{\ \ ニ\ \ }$で表される領域である。
(3)点(x,y)が領域C上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く領域を領域Dとする。
(i)領域Dを図示しなさい。ただし領域は斜線で示し、境界線となる式も図に記入すること。
(ii)領域Dの面積は$\boxed{\ \ ヌ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

積分で面積が出る理由

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
積分をするとどうして面積が出るの?

仕組みを解説します!
この動画を見る 

福田の数学〜北海道大学2023年文系第4問〜円と放物線の共通接線と囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ qを実数とする。座標平面上に円C:$x^2$+$y^2$=1と放物線P:y=$x^2$+q がある。
(1)CとPに同じ点で接する傾き正の直線が存在するとき、qの値およびその接点の座標を求めよ。
(2)(1)で求めたqの値を$q_1$、接点のy座標を$y_1$とするとき、連立不等式
$\left\{\begin{array}{1}
x^2+y^2≧1\\
y≧x^2+q_1\\
y≦y_1\\
\end{array}\right.$
の表す領域の面積を求めよ。

2023北海道大学文系過去問
この動画を見る 
PAGE TOP