問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 四面体OABCは\hspace{231pt}\\
OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4\hspace{31pt}\\
を満たすとする。また、三角形ABCの重心をGとするとき、OG=\sqrt2である。\\
(1)\ \overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }},\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC
}=\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\hspace{110pt}\\
(2)\ \overrightarrow{ OG }と\overrightarrow{ OA }+k\overrightarrow{ OB }が垂直であるのはk=\boxed{\ \ カキ\ \ }\ のときである。\hspace{42pt}\\
(3)\ tを実数とする。|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|\ の最小値は\frac{\sqrt{\boxed{\ \ クケコ\ \ }}}{\boxed{\ \ サ\ \ }}であり、\hspace{10pt}\\
そのときのtの値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}\ である。\hspace{150pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
\begin{eqnarray}
{\large\boxed{2}}\ 四面体OABCは\hspace{231pt}\\
OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4\hspace{31pt}\\
を満たすとする。また、三角形ABCの重心をGとするとき、OG=\sqrt2である。\\
(1)\ \overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }},\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC
}=\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\hspace{110pt}\\
(2)\ \overrightarrow{ OG }と\overrightarrow{ OA }+k\overrightarrow{ OB }が垂直であるのはk=\boxed{\ \ カキ\ \ }\ のときである。\hspace{42pt}\\
(3)\ tを実数とする。|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|\ の最小値は\frac{\sqrt{\boxed{\ \ クケコ\ \ }}}{\boxed{\ \ サ\ \ }}であり、\hspace{10pt}\\
そのときのtの値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}\ である。\hspace{150pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 四面体OABCは\hspace{231pt}\\
OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4\hspace{31pt}\\
を満たすとする。また、三角形ABCの重心をGとするとき、OG=\sqrt2である。\\
(1)\ \overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }},\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC
}=\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\hspace{110pt}\\
(2)\ \overrightarrow{ OG }と\overrightarrow{ OA }+k\overrightarrow{ OB }が垂直であるのはk=\boxed{\ \ カキ\ \ }\ のときである。\hspace{42pt}\\
(3)\ tを実数とする。|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|\ の最小値は\frac{\sqrt{\boxed{\ \ クケコ\ \ }}}{\boxed{\ \ サ\ \ }}であり、\hspace{10pt}\\
そのときのtの値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}\ である。\hspace{150pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
\begin{eqnarray}
{\large\boxed{2}}\ 四面体OABCは\hspace{231pt}\\
OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4\hspace{31pt}\\
を満たすとする。また、三角形ABCの重心をGとするとき、OG=\sqrt2である。\\
(1)\ \overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }},\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC
}=\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\hspace{110pt}\\
(2)\ \overrightarrow{ OG }と\overrightarrow{ OA }+k\overrightarrow{ OB }が垂直であるのはk=\boxed{\ \ カキ\ \ }\ のときである。\hspace{42pt}\\
(3)\ tを実数とする。|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|\ の最小値は\frac{\sqrt{\boxed{\ \ クケコ\ \ }}}{\boxed{\ \ サ\ \ }}であり、\hspace{10pt}\\
そのときのtの値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}\ である。\hspace{150pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
投稿日:2022.09.27