自然数の4乗の逆数の和 オイラー級数(Euler) やっぱりπが登場 - 質問解決D.B.(データベース)

自然数の4乗の逆数の和 オイラー級数(Euler) やっぱりπが登場

問題文全文(内容文):
$\frac{1}{1^4}$+$\frac{1}{2^4}$+$\frac{1}{3^4}$+$\frac{1}{4^4}$+$\cdots$$\frac{1}{n^4}$=$\frac{\pi^4}{90}$
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^4}$+$\frac{1}{2^4}$+$\frac{1}{3^4}$+$\frac{1}{4^4}$+$\cdots$$\frac{1}{n^4}$=$\frac{\pi^4}{90}$
投稿日:2018.03.02

<関連動画>

でんがんとヨビノリを脇に添えてもっちゃんとバーゼル問題を解く!

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^2}+$$\frac{1}{2^2}+$$\frac{1}{3^2}・・・+$$\frac{1}{n^2}=$$\frac{\pi^2}{6}$
この動画を見る 

京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学

$f(x)=x^3-3ax$

$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
この動画を見る 

福田のおもしろ数学401〜極限関数の個数

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$f(x)=\displaystyle \lim_{n\to\infty} \dfrac{\tan^{2n+1}x-\tan^n x+1}{\tan^{2n+2}x+\tan^{2n}x+1}$

$\left(0\leqq x \lt \dfrac{\pi}{2}\right)$のグラフを描いて下さい。
この動画を見る 

大学入試問題#800「コメントが難しい」 #兵庫県立大学中期(2012) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
実数$x$に対して
$f(x)=\displaystyle \lim_{ x \to \infty } n\{\sin(\displaystyle \frac{1+n}{n}x)+\sin(\displaystyle \frac{1-n}{n}x)\}$とおく。
次の問いに答えよ。
1.$f(x)$を求めよ。
2.定積分$\displaystyle \int_{0}^{\pi} f(x) dx$を求めよ。

出典:2012年兵庫県立大学中期 入試問題
この動画を見る 

福田のおもしろ数学202〜収束するための必要十分条件

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
整式$f(x)$がある。
$\displaystyle \lim_{x \rightarrow a}\dfrac{f(x)}{x-a}=b$であるための必要十分条件を求めよ。
この動画を見る 
PAGE TOP