福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡

問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
投稿日:2025.05.06

<関連動画>

大学入試問題#627「よくみる形」 横浜市立医学部(2006) #定積分 #極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{1}^{n} \displaystyle \frac{1}{x^3}e^{-\frac{1}{x}} dx$

出典:2006年横浜市立大学医学部 入試問題
この動画を見る 

大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。

出典:2017年埼玉大学 入試問題
この動画を見る 

解けるように作られた問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-x-1=0 $の実数解を$ \alpha $とするとき,
$ \sqrt[3]{3\alpha^2-4\alpha}+\sqrt[3]{3\alpha^2+4\alpha+2}$の値を求めよ.
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

本当に紙を42回折ると月に行けるのか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
紙を42回折ったときの紙の厚さなど 解説動画です
この動画を見る 
PAGE TOP