福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
投稿日:2023.06.19

<関連動画>

Picmin3daisukiさんの数列(オリジナル)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=\sqrt{ 3 }$

$\displaystyle \frac{a_{n+1}}{a_n}=a_{n+1}\ a_n+2$のとき一般項$a_n$を求めよ
この動画を見る 

【高校数学】数列の基礎・言葉の確認~知らないとヤバい知識~ 3-1【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1,4,9,16,25…この一般項を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題076〜東京大学2018年度理系第2問〜数列の項の大小とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
第2問
数列$a_1$, $a_2$, $\cdots$を
$a_n$=$\displaystyle\frac{{}_{2n+1}C_n}{n!}$ ($n$=1,2,...)
で定める。
(1)n≧2とする。$\frac{a_n}{a_{n-1}}$を既約分数$\frac{q_n}{p_n}$として表したときの分母$p_n$≧1と分子$q_n$を求めよ。
(2)$a_n$が整数となるn≧1をすべて求めよ。

2018東京大学理系過去問
この動画を見る 

数学「大学入試良問集」【13−9 数学的帰納法(累積帰納法)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$a_0,a_1,a_2,・・・a_n・・・$を次のように定義する。
$a_0=\displaystyle \frac{1}{2},a_{n+1}\displaystyle \sum_{k=0}^n a_k a_{n-k}n=0,1,2,・・・)$
以下の問いに答えよ。
(1)$a_1,a_2,a_3$を求めよ。
(2)一般項$a_n$を求めよ。
(3)$b_n=\displaystyle \sum_{k=0}^n\displaystyle \frac{n!}{k!(n-k)!}a_ka_{n-k}(n=0,1,2,・・・)$を求めよ。
この動画を見る 

群馬大・津田塾大 数列の和・積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B#津田塾大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で

津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
この動画を見る 
PAGE TOP