【数Ⅲ】【積分とその応用】面積15 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積15 ※問題文は概要欄

問題文全文(内容文):
$x$軸に平行な直線と曲線$y=\sin x~~(0\leqq x \leqq 3\pi)$が4点で交わるとき、この直線と曲線で囲まれた3つの部分の面積の和が最小となるような直線の方程式を求めよ。
チャプター:

0:00 オープニング
0:05 解説
5:01 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x$軸に平行な直線と曲線$y=\sin x~~(0\leqq x \leqq 3\pi)$が4点で交わるとき、この直線と曲線で囲まれた3つの部分の面積の和が最小となるような直線の方程式を求めよ。
投稿日:2025.03.27

<関連動画>

14東京都教員採用試験(数学:1-6番 区分求積法)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣(6)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \frac{2k}{n^2+k^2}$
$\displaystyle \int_0^1 f(x) dx = \displaystyle \lim_{ n \to \infty } \frac{1}{n}
\displaystyle \sum_{k=1}^n f(\frac{k}{n})$
この動画を見る 

大学入試問題#14 津田塾大学(2021) 微積の応用

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。

出典:2021年津田塾大学 入試問題
この動画を見る 

大学入試問題#169 愛知教育大学(2013) 区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。

出典:2013年愛知教育大学 入試問題
この動画を見る 

大学入試問題#344「みるからにあの性質・・・」 富山大学 #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{x\ sin\ x}{1+e^{-x}}dx$

出典:富山大学 入試問題
この動画を見る 

#55数検準1級1次  過去問 2022年6月 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^3}{1+x^2}dx$

出典:2022年6月数検準一級一次
この動画を見る 
PAGE TOP