早稲田 積分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

早稲田 積分 Mathematics Japanese university entrance exam

問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
投稿日:2018.12.10

<関連動画>

17神奈川県教員採用試験(数学:13番 y軸回転体)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{13}$
$y=\frac{1}{2}x^2-x$とx軸で囲まれた領域をy軸を中心としてできる回転体の体積を求めよ。
この動画を見る 

#宮崎大学2024#不定積分_20#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2log$ $x$ $dx$

出典:2024年 宮崎大学
この動画を見る 

福田の数学〜北海道大学2024年理系第5問〜対数関数の増減凹凸と面積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ 関数$f(x)$=$x\log(x+2)$+1 ($x$>-2)
を考える。$y$=$f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし$\log t$は$t$の自然対数である。
(1)直線$l$の方程式を求めよ。
(2)曲線$C$は下に凸であることを証明せよ。
(3)$C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
この動画を見る 

【高校数学】東北大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分100日目~47都道府県制覇への道~【㊸宮城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東北大学 2024】
$xyz$空間内の$xy$平面上にある円$C:x^2+y^2=1$および円板$D:x²+y²≦1$を考える。$D$を底面とし点$P(0,0,1)$を頂点とする円錐を$K$とする。$A(0,-1,0),B(0,1,0)$とする。$xyz$空間内の平面$H:z=x$を考える。すなわち、$H$は$xz$平面上の直線$z=x$と線分$AB$をともに含む平面である。$K$の側面と$H$の交わりとしてできる曲線を$E$とする。$\displaystyle -\frac{π}{2}≦θ≦\frac{π}{2}$を満たす実数$θ$に対し、円$C$上の点$Q(cosθ,sinθ,0)$をとり、線分$PQ$と$E$の共有点を$R$とする。
(1) 線分$PR$の長さを$r(θ)$とおく。$r(θ)$を$θ$を用いて表せ。
(2)円錐$K$の側面のうち、曲線$E$の点$A$から点$R$までを結ぶ部分、線分$PA$,および線分$PR$により囲まれた部分の面積を$S(θ)$とおく。$θ$と実数$h$が条件$\displaystyle 0≦θ<θ+h≦\frac{π}{2}$を満たすとき、次の不等式が成り立つことを示せ。
$\displaystyle \frac{h\{{r(θ)}\}^2}{2\sqrt{2}}≦S(θ+h)-S(θ)≦\frac{h\{{r(θ+h)\}}^2}{2\sqrt{2}}$
(3) 円錐$K$の側面のうち、円$C$の$x≧0$の部分と曲線$E$により囲まれた部分の面積を$T$とおく。$T$を求めよ。必要であれば$\displaystyle tan\frac{θ}{2}=u$とおく置換積分を用いてもよい。
この動画を見る 

【高校数学】毎日積分8日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^e5^{\log x}dx$
これを解け.
この動画を見る 
PAGE TOP