早稲田 積分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

早稲田 積分 Mathematics Japanese university entrance exam

問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
投稿日:2018.12.10

<関連動画>

【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #チャート式#青チャートⅢ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
この動画を見る 

会津大学2014 #定積分 #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x\sqrt{ e^x-1 }\ dx$

出典:2019年会津大学
この動画を見る 

大学入試問題#406「(1)がなくて単発の出題だときつかった」 東京医科大学(2) 2022 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \displaystyle \frac{\sqrt{ 4+5\tan|x| }}{1-\sin\ x}\ dx$

出典:2022年東京医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第7問〜空間ベクトルと回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
この動画を見る 

【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る 
PAGE TOP