【数B】ベクトル:ベクトルの基本⑩三角形の面積の公式2パターン - 質問解決D.B.(データベース)

【数B】ベクトル:ベクトルの基本⑩三角形の面積の公式2パターン

問題文全文(内容文):
ベクトルを用いた三角形の面積の公式を解説していきます.
チャプター:

0:00 オープニング
0:10 三角比の面積公式のおさらい
1:11 ベクトルを用いた公式
3:19 成分を用いて考える
5:56 エンディング

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式を解説していきます.
投稿日:2022.08.25

<関連動画>

【数C】ベクトル平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
|a+tb|はt=□のとき最小値□を取る
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
この動画を見る 

18奈良県教員採用試験(数学:1番 ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣一直線上にないO、A、B
$\overrightarrow{ OD } = 3\overrightarrow{ OA }$ , $\overrightarrow{ OE } = 2\overrightarrow{ OB }$
BDとAEの交点をC
(1)$\overrightarrow{ OC } $を$\overrightarrow{ OA } $と$\overrightarrow{ OB } $で表せ
(2)OCとABの交点をF
AF:FBを求めよ。
(3)$|\overrightarrow{ OA } |=4 $ , $|\overrightarrow{ OB }|= 5$ , $|\overrightarrow{ OC }|= 6$のときDEの長さを求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。

(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。

2019上智大過去問
この動画を見る 

【数B】ベクトル:2021年高3第1回数台全国模試 (文系)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
この動画を見る 
PAGE TOP