【高校受験対策/数学/確率7】シンプルなコイン問題 - 質問解決D.B.(データベース)

【高校受験対策/数学/確率7】シンプルなコイン問題

問題文全文(内容文):
校受験対策・確率7

Q
表に1と書かれたコインが1枚、2と書かれたコインが1枚、4と書かれたコインが1枚の合計3枚のコインがある。
いずれのコインも裏には何も書かれていない。
この3枚のコインを同時に投げるとき、①②の問いに答えなさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。

①表裏の出かたは全部で何通りあるか、求めなさい。

②表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。

Q
表に1と書かれたコインが1枚、2と書かれたコインが2枚、4と書かれたコインが1枚の合計4枚のコインが ある。
いずれのコインも裏には何も書かれていない。
この4枚のコインを同時に投げるとき、③、④の問いに答え なさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。

③表が出たコインに書かれた数の和が、4になる確率を求めなさい。

④表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
校受験対策・確率7

Q
表に1と書かれたコインが1枚、2と書かれたコインが1枚、4と書かれたコインが1枚の合計3枚のコインがある。
いずれのコインも裏には何も書かれていない。
この3枚のコインを同時に投げるとき、①②の問いに答えなさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。

①表裏の出かたは全部で何通りあるか、求めなさい。

②表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。

Q
表に1と書かれたコインが1枚、2と書かれたコインが2枚、4と書かれたコインが1枚の合計4枚のコインが ある。
いずれのコインも裏には何も書かれていない。
この4枚のコインを同時に投げるとき、③、④の問いに答え なさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。

③表が出たコインに書かれた数の和が、4になる確率を求めなさい。

④表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。
投稿日:2020.01.16

<関連動画>

【6分でマスター!!】単項式と多項式の次数の求め方を解説!(係数と定数項についても)〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
単項式と多項式の次数の求め方について解説します。
この動画を見る 

中2数学「式による説明①(偶数と奇数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明①~(偶数と奇数)

例1
偶数と奇数の和は奇数になることを説明しなさい。

例2
奇数と奇数の和は偶数になることを説明しなさい。

例3
偶数と奇数の積は偶数になることを説明しなさい。
この動画を見る 

中2数学「高さが等しい三角形の面積比②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
~例題~

次の図の$\triangle ABC$で点$D,E$は辺$AB$上の点で点$F,G$は辺$BC$上の点です.
線分$EF,DF,DG,AG$によって$\triangle ABC$の面積が5等分されています.

(1)
$BG:GC$を最も簡単な整数の比で表しなさい.

(2)
$BC=15$cmのとき,$BF$の長さを求めなさい.

この動画を見る 

福田のおもしろ数学014〜恒例10秒チャレンジ〜3変数の連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=4 \\
y+z=3 \\
z+x=5
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

再撮影しましたので、概要欄のリンクからお願いします!

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
( )も分数も少数も全部消してやるぜ!

$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{3}=+\displaystyle \frac{y}{4}=-1 \\
3y=5x-9
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP