【中学数学・数C】1次関数・平面ベクトル:座標平面上の三角形の面積 - 質問解決D.B.(データベース)

【中学数学・数C】1次関数・平面ベクトル:座標平面上の三角形の面積

問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
チャプター:

0:00 オープニングと問題説明
1:26 通常の解き方
2:00 ここからが必見!裏技を紹介!
5:26 まとめ

単元: #数学(中学生)#中2数学#平面上のベクトル#1次関数#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
投稿日:2021.03.18

<関連動画>

福田の数学〜回転の概念を使って考えるよ〜北里大学2023年医学部第3問〜ベクトルの漸化式と点列

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#ベクトルと平面図形、ベクトル方程式#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。

2023北里大学医過去問
この動画を見る 

数学「大学入試良問集」【14−4内心と平面ベクトルと面積の問題】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において、$AB=3,BC=4,CA=2$とする。
このとき、$\angle A$と$\angle B$の2等分線の交点を$I$とする。

(1)$\overrightarrow{ AI }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)$\triangle ABC$の面積を求めよ。
(3)$\triangle IBC$の面積を求めよ。
この動画を見る 

【裏技】ベクトルと面積比、これ知らない奴来い!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
ベクトルと面積比の説明動画です
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}

2022大阪大学文系過去問
この動画を見る 
PAGE TOP