「二次関数の最大最小 場合分け①】【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「二次関数の最大最小 場合分け①】【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(2)$f(x)$の最大値$M(a)$を求めよ。

2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(3)$y=m(a)$のグラフをかけ。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(2)$f(x)$の最大値$M(a)$を求めよ。

2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(3)$y=m(a)$のグラフをかけ。
投稿日:2020.11.18

<関連動画>

素数か?

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A_{2023}$は素数か?
$A_n=\alpha^n+\beta^n+\delta^n$
$A_1=\alpha+\beta+\delta=1$
$A_2=\alpha^2+\beta^2+\delta^2=3$
$A_3=\alpha^3+\beta^3+\delta^3=10$
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

東大 三角比と漸化式

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.

(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)

1994東大過去問
この動画を見る 

単位円周上には無限の有理点

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
単位円周上に$x$座標,$y$座標ともに有理数である点は無限に存在することを示せ.
この動画を見る 

2023高校入試解説14問目 2次方程式 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x+\sqrt 3 +\sqrt 5)^2 - 3 \sqrt 5(x-2 \sqrt 5 + \sqrt 3 ) -35 = 0$

2023渋谷教育学園幕張高等学校
この動画を見る 
PAGE TOP