【高校数学】重複順列の例題を一緒に解こう~これだけはできて~ 1-9.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】重複順列の例題を一緒に解こう~これだけはできて~ 1-9.5【数学A】

問題文全文(内容文):
1⃣
(1) 5題の問題に○、×で答えるとき、○×のつけ方は何通りあるか。

(2) 3個の数字0,1,2を重複を許して用いてできる5桁の整数は何個か。

(3) A,B 2つの箱に異なる10個の玉を入れる方法は何通りあるか。
  箱の中に少なくとも1個の玉は入れるものとする。

-----------------

2⃣
(1) 8人を2つの部屋A,Bに入れる方法は何通りあるか。
  ただし、1人も入らない部屋があってもよいものとする。

(2) 8人を2つのグループA, Bに分ける方法は何通りあるか。

(3) 8人を2つのグループに分ける方法は何通りあるか。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
(1) 5題の問題に○、×で答えるとき、○×のつけ方は何通りあるか。

(2) 3個の数字0,1,2を重複を許して用いてできる5桁の整数は何個か。

(3) A,B 2つの箱に異なる10個の玉を入れる方法は何通りあるか。
  箱の中に少なくとも1個の玉は入れるものとする。

-----------------

2⃣
(1) 8人を2つの部屋A,Bに入れる方法は何通りあるか。
  ただし、1人も入らない部屋があってもよいものとする。

(2) 8人を2つのグループA, Bに分ける方法は何通りあるか。

(3) 8人を2つのグループに分ける方法は何通りあるか。
投稿日:2020.05.25

<関連動画>

数学「大学入試良問集」【5−9 確率と二項定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複数の参加者がグー、チョキ、パーを出して勝敗を決めるジャンケンについて、以下の問いに答えよ。
ただし、各参加者は、グー、チョキ、パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする。
(1)
4人で一度だけジャンケンするとき、1人だけが勝つ確率、2人が勝つ確率、3人が勝つ確率、引き分けになる確率をそれぞれ求めよ。

(2)
$n$人で一度だけジャンケンをするとき、$r$人が勝つ確率を$n$と$r$を用いて表せ。
ただし、$n \geqq 2,1 \leqq r \lt n$とする。

(3)
$\displaystyle \sum_{r=1}^{n-1}{}_{ n } C_r=2^n-2$が成り立つことを示し、$n$人でジャンケンをするとき、引き分けになる確率を$n$を用いて表せ。
ただし、$n \geqq 2$とする。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。

$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}$

2021上智大学理系過去問
この動画を見る 

【高校数学】同じものを含む順列の例題~できた方がいい問題3題~1-11.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
8人の生徒を次のようにする方法は何通りあるか。
(a)4人,3人,1人の3組分ける
(b)4人,4人の2つの組A, Bに分ける
(c)4人,4人の2組に分ける
(d)4人,2人,2人の3組に分ける
(e)2人,2人,2人,2人の4組に分ける

-----------------

2⃣
次の数は何通りか。
(a)6個の数1,1,1,2,2,3を並べてできる6桁の整数
(b)7個の数0,1,1,1,2,2,3を並べてできる7桁の整数

-----------------

3⃣
YOKOHAMAの8文字を1列に並べる
(a)異なる並べ方は何通りあるか
(b)OとAが偶数番目にある並べ方は何通りあるか
(c)Y,K,H,Mがこの順にある並べ方は何通りあるか

この動画を見る 

【理数個別の過去問解説】1993年度京都大学 数学 理系後期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n\geqq 3$とする。$1,2,...,n$のうちから重複を許して6個の数字を選びそれらを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよう。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP