福田の1.5倍速演習〜合格する重要問題032〜千葉大学2016年度理系第8問〜不等式の証明 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題032〜千葉大学2016年度理系第8問〜不等式の証明

問題文全文(内容文):
以下の問いに答えよ。
(1)$x \gt 0$において、不等式$\log x \lt x $を示せ。
(2)$1 \lt a \lt b$のとき、不等式
$\frac{1}{\log a}-\frac{1}{\log b} \lt \frac{b-a}{a(\log a)^2}$
を示せ。
(3)$x \geqq e$において、不等式
$\int_e^x\frac{dt}{t\log(t+1)} \geqq \log(\log x)+\frac{1}{2(\log x)^2}-\frac{1}{2}$
を示せ。ただし、eは自然対数の底である。

2016千葉大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$x \gt 0$において、不等式$\log x \lt x $を示せ。
(2)$1 \lt a \lt b$のとき、不等式
$\frac{1}{\log a}-\frac{1}{\log b} \lt \frac{b-a}{a(\log a)^2}$
を示せ。
(3)$x \geqq e$において、不等式
$\int_e^x\frac{dt}{t\log(t+1)} \geqq \log(\log x)+\frac{1}{2(\log x)^2}-\frac{1}{2}$
を示せ。ただし、eは自然対数の底である。

2016千葉大学理系過去問
投稿日:2022.12.17

<関連動画>

福田の数学〜上智大学2023年TEAP利用型理系第4問Part2〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

福田のおもしろ数学565〜Nesbittの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a\gt 0,b\gt 0,c \gt 0$のとき

$\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \geqq \dfrac{3}{2}$

を証明して下さい。
    
この動画を見る 

福田のおもしろ数学307〜不等式の証明エレガントに証明しよう

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a\geqq 1,b\geqq 1$のとき、$\sqrt{a-1}+\sqrt{b-1}\leqq \sqrt{ab}$であることを示して下さい。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題019〜東京工業大学2016年度理系数学第4問〜整数に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とする。
(1)nが素数または4のとき、$(n-1)!$はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、$(n-1)!$はnで割り切れることを示せ。

2016東京工業大学理系過去問
この動画を見る 

福田のおもしろ数学215〜三平方の定理が成り立つ左辺の二項のどちらか一方は4の倍数である証明

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の数$x,y$が$x^2+y^2=z^2$を満たすとき、$x$または$y$は$4$の倍数となることを証明してください。
この動画を見る 
PAGE TOP