東京医科大 3乗根の不等式 - 質問解決D.B.(データベース)

東京医科大 3乗根の不等式

問題文全文(内容文):
$ \sqrt[3]{n+1}-\sqrt[3]{n}<\dfrac{1}{48}を満たす最小の自然数nを求めよ.$
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{n+1}-\sqrt[3]{n}<\dfrac{1}{48}を満たす最小の自然数nを求めよ.$
投稿日:2023.01.28

<関連動画>

福田のわかった数学〜高校2年生011〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 不等式の証明\\
|x| \leqq 1,|y| \leqq 1のとき、不等式\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\
0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1\\
が成り立つことを示せ。\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\end{eqnarray}
この動画を見る 

福田の1日1題わかった数学〜高校2年生第4回〜整式の割り算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 整式の割り算\\
x^{100}+2x^{50}+3x^2+4 を\\
x^2+x+1 で割った余りは?
\end{eqnarray}
この動画を見る 

【数Ⅱ】式と証明:分数式の基本

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
(x²-y²)/{x²-(y-z)²} × {(x-y)²-z²}/(x²-xy) ÷ (x²+2xy+y²)/(x²+xy-xz)
この動画を見る 

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
(x-10)(x-a)+1=(x+a)(x+c)$
この動画を見る 
PAGE TOP