数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
投稿日:2021.03.11

<関連動画>

漸化式 関西医科大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021関西医科大学過去問題
$a_1=\frac{1}{13}$ n=1,2,・・・自然数
$5a_{n+1}=10a_n-a_{n+1}・a_n$
一般項$a_n$を求めよ
この動画を見る 

弘前大 3倍角 5倍角 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#加法定理とその応用#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sin 3x$を$\sin x$で表せ

(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ


出典:1986年弘前大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
四面体 $\mathrm{ABCD}$ において、$|\overrightarrow{\mathrm{AB}}| = 3,$ $|\overrightarrow{\mathrm{AC}}|$ $=|\overrightarrow{\mathrm{AD}}|$$= |\overrightarrow{\mathrm{BC}}|$$=|\overrightarrow{\mathrm{BD}}|=4,$$|\overrightarrow{\mathrm{CD}}|=5$であるとき $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$ $=\frac{\fbox{アイ}}{\fbox{ウエ}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$ $=\frac{\fbox{オカ}}{\fbox{キク}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}$$=\frac{\fbox{ケコ}}{\fbox{サシ}}$
ここで、頂点 $\mathrm{D}$ から $\triangle \mathrm{ABC}$ に下した垂線の足を $\mathrm{H}$ とすると、$\overrightarrow{\mathrm{AH}}$ は $\overrightarrow{\mathrm{AB}}$ と $\overrightarrow{\mathrm{AC}}$ を用いて
$\overrightarrow{\mathrm{AH}}$ $=\frac{\fbox{スセ}}{\fbox{ソタ}} \overrightarrow{\mathrm{AB}}$ $+ \frac{\fbox{チツ}}{\fbox{テト}}\overrightarrow{\mathrm{AC}}$ とあらわすことができる。
垂線 $\mathrm{DH}$ の長さは $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ であるから、四面体 $\mathrm{ABCD}$ の体積は $\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第4問〜復元抽出と非復元抽出の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
箱の中に1文字ずつ書かれたカードが10枚ある。そのうち5枚にはA、
3枚にはB、2枚にはCと書かれている。箱から1枚ずつ、3回カードを
取り出す試行を考える。
(1)カードを取り出すごとに箱に戻す場合、1回目と3回目に取り出したカード
の文字が一致する確率を求めよ。
(2)取り出したカードを箱に戻さない場合、1回目と3回目に取り出したカード
の文字が一致する確率を求めよ。
(3)取り出したカードを箱に戻さない場合、2回目に取り出したカードの文字が
Cであるとき、1回目と3回目に取り出したカードの文字が一致する
条件つき確率を求めよ。

2022北海道大学文系過去問
この動画を見る 

大学入試問題#805「特に言うことないよねーw」 #東邦大学医学部(2004) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{ \pi } (\sin2x\cos\ x+\sin\ x \cos2x) dx$

出典:2004年東邦大学医学部
この動画を見る 
PAGE TOP