大学入試問題#98 千葉大学医学部(2018) 積分・極限 - 質問解決D.B.(データベース)

大学入試問題#98 千葉大学医学部(2018) 積分・極限

問題文全文(内容文):
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。


(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2018年千葉大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。


(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2018年千葉大学 入試問題
投稿日:2022.01.25

<関連動画>

【高校数学】数Ⅲ-62 合成関数①

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y$が$u$の関数で$y=g(u)$と表され、$u$が$x$の関数で$u=f(x)$と表されるとき、
$y$は$x$の関数で$y=g(f(x))$と表され、これを$f$と$g$の合成関数という。
また、$y=g(f(x))$を$y=①$と表す。

②$f(x)= 4x ^ 2 、g(x) = -\dfrac{1}{2} (x + 1)$であるとき、
合成関数$(gof)(x)、(fog)(x)$をそれぞれ求めなさい。
この動画を見る 

福田のわかった数学〜高校3年生理系031〜極限(31)関数の極限、色々な極限(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(1)\\
\lim_{x \to 1}\frac{(x-1)^2}{|x^2-1|} を求めよ。
\end{eqnarray}
この動画を見る 

大学入試問題#459「構想力が問われる問題」 早稲田大学(2017) #連続関数

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$C$:定数 $-1 \lt C \lt 1$
すべての実数$x$に対して
$f(x)+f(cx)=x^2$を満たす連続関数$f(x)$を求めよ

出典:2017年早稲田大学 入試問題
この動画を見る 

高専数学 微積II #67 2変数関数の極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x,y)=\displaystyle \frac{xy^3}{3x^2+y^6}$
$(x,y) \neq (0,0)$において
$\displaystyle \lim_{ (x,y) \to (0,0) }f(x,y)$が存在するか調べよ。
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 
PAGE TOP