福田の数学〜東京慈恵会医科大学2025医学部第2問〜定積分と不等式の証明 - 質問解決D.B.(データベース)

福田の数学〜東京慈恵会医科大学2025医学部第2問〜定積分と不等式の証明

問題文全文(内容文):

$\boxed{2}$

次の問いに答えよ。ただし、対数は自然対数とする。

(1)$3$以上の自然数$n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$

(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。

(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$

$2025$年東京慈恵会医科大学医学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

次の問いに答えよ。ただし、対数は自然対数とする。

(1)$3$以上の自然数$n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$

(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。

(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$

$2025$年東京慈恵会医科大学医学部過去問題
投稿日:2025.07.14

<関連動画>

06和歌山県教員採用試験(数学:3番 定積分の応用)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(t)=\displaystyle \int_{0}^{1}|x^2-tx|dx$の最小値を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(6)〜絶対値の付いた定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の定積分の値を求めよ。
$\displaystyle \int_{0}^{4} |x^2-2x-3| dx$

2023中央大学経済学部過去問
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

#高専#不定積分_16#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x-1}{\sqrt[ 3 ]{ x }-1} dx$
この動画を見る 

#茨城大学(2020) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{3x^3+4x}{x^2+1} dx$

出典:2020年茨城大学
この動画を見る 
PAGE TOP