中学生以下はコメント欄を見ないで下さい - 質問解決D.B.(データベース)

中学生以下はコメント欄を見ないで下さい

問題文全文(内容文):
x=?
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
投稿日:2021.07.22

<関連動画>

イラン数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.

イラン数学オリンピック過去問
この動画を見る 

【数学Ⅱ/テスト対策】円の接線の方程式①

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円$x^2+y^2=25$上の点$P(3,-4)$における接線の方程式を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。

2020慶應義塾大学総合政策学部過去問
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。

2024共通テスト過去問
この動画を見る 

神様の確率OnlineMathContest

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白$999$個赤$1001$個のボールを無作為に1個ずつ取り出し,どちらかの色がすべて取り出されたら終了,白が取り出されて終わる確率を求めよ.
この動画を見る 
PAGE TOP