#日本工業大学(2021) #定積分 #Shorts - 質問解決D.B.(データベース)

#日本工業大学(2021) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{2}^{4} log_2\ x\ dx$

出典:2021年日本工業大学
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} log_2\ x\ dx$

出典:2021年日本工業大学
投稿日:2024.04.17

<関連動画>

大学入試問題#796「解法は、ほぼ1択か」 #横浜国立大学(2024) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\sqrt{ 3 }} \displaystyle \frac{e^{3x}+4e^{2x}+e^x}{e^{4x}+2e^{2x}+1}dx$

出典:2024年横浜国立大学
この動画を見る 

#三重大学医学部2023#不定積分_47

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#三重大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} (x+1)\log x \ dx$
を解け.

2023三重大学医学部過去問題
この動画を見る 

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$

出典:2016年筑波大学
この動画を見る 

#宮崎大学2024#不定積分_20#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2log$ $x$ $dx$

出典:2024年 宮崎大学
この動画を見る 

福田の数学〜立教大学2024年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq x \leqq1$ の範囲において $f(x) \geqq 0$ である $2$ 次関数 $f(x) = ax^2+b$ は、等式
$\displaystyle f(x)(\int_0^1f(t)dt) = x^2+5$
を満たす。このとき、定数 $a,b$ は $a=\fbox{ケ}, b=\fbox{コ}$ である。
この動画を見る 
PAGE TOP