整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
$m^2+615=2^n$である,自然数$m,n$を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2+615=2^n$である,自然数$m,n$を求めよ.
投稿日:2020.05.27

<関連動画>

素数か?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
30!+1は素数か??
この動画を見る 

神戸大 N進法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N_{(10)}$を7進法、11進法で表すといずれも3ケタになり、数字の並びが反対であった。
$N_{(10)}$を求めよ
$ac \neq 0$

出典:1968年神戸大学 過去問
この動画を見る 

2023高校入試数学解説98問目 整数問題 秋田県

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは100より小さい素数
$\frac{231}{n+2}$が整数となるnをすべて求めよ
2023秋田県
この動画を見る 

整数問題 筑波大附属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
4ケタの数字3,4,5,6を並べ替えてできる4ケタの数をmとし、mの各位の数を逆順に並べてできる数をnとするとm+nは必ずpの倍数となる。
(ただしpは考えられる最大の整数)
p=?

筑波大学附属高等学校
この動画を見る 

19神奈川県教員採用試験(数学:整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師: ますただ
問題文全文(内容文):
$x,y \leftarrow in$
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6},x+y$の最大値を求めよ.

19神奈川県教員採用試験(数学:整数問題)過去問
この動画を見る 
PAGE TOP