問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(1)Sが整数になる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\hspace{150pt}\\
Sが3の整数倍になる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\hspace{130pt}\\
Sが4の整数倍になる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\hspace{99pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(1)Sが整数になる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\hspace{150pt}\\
Sが3の整数倍になる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\hspace{130pt}\\
Sが4の整数倍になる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\hspace{99pt}
\end{eqnarray}
2022上智大学文系過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(1)Sが整数になる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\hspace{150pt}\\
Sが3の整数倍になる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\hspace{130pt}\\
Sが4の整数倍になる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\hspace{99pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(1)Sが整数になる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\hspace{150pt}\\
Sが3の整数倍になる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\hspace{130pt}\\
Sが4の整数倍になる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\hspace{99pt}
\end{eqnarray}
2022上智大学文系過去問
投稿日:2022.10.01