問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
投稿日:2021.06.30