【高校数学】 数Ⅱ-146 微分係数と導関数③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-146 微分係数と導関数③

問題文全文(内容文):
◎次の条件を満たす3次関数$f(x)$を求めよう。

①$x^3$の係数が$1,f(1)=2, f(-1)=-2, f'(-1)=0$

② $f(x) +x f(x) = 4x^3-9x^2+6x+1$
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす3次関数$f(x)$を求めよう。

①$x^3$の係数が$1,f(1)=2, f(-1)=-2, f'(-1)=0$

② $f(x) +x f(x) = 4x^3-9x^2+6x+1$
投稿日:2015.10.05

<関連動画>

09愛知県教員採用試験(数学:3番 指数・対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$25^{\log_5 3^x}-4\sqrt3・3^x=-9$を解け.
この動画を見る 

福田の数学〜立教大学2022年理学部第3問〜接線法線と囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$t$を正の実数とする。座標平面上に放物線$C_1:y=x^2$とその上の点$P(t,\ t^2)$がある。
Pにおける$C_1$の接線を$l$とし、法線を$m$とする。$l$とx軸との交点をQとする。
Pにおいて$l$に接し、さらにx軸にも接する円で、中心のx座標がt以下であるものを$C_2$
とする。$C_2$の中心をAとし、$C_2$とx軸の接点をBとする。
(1)lの方程式を求めよ。
(2)mの方程式を求めよ。
(3)$\angle BAP=\frac{\pi}{3}$であるとき、tの値を求めよ。
(4)(3)のとき、Aの座標を求めよ。
(5)(3)のとき、四角形ABQPの面積を求めよ。

2022立教大学理学部過去問
この動画を見る 

大阪大 対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$

(1)
$m,n$を求めよ

(2)
$a \gt \displaystyle \frac{2}{3}$を示せ

出典:2006年大阪大学 過去問
この動画を見る 

これ解ける?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$5^x=7^y=1225$
$\displaystyle \frac{xy}{x+y}$の値を求めよ
この動画を見る 

東京電機大 4次関数と直線の共有点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ

出典:2017年東京電機大学 過去問
この動画を見る 
PAGE TOP