問題文全文(内容文):
高校受験対策・図形37
Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。
問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。
【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い) ・・・➁
$AB:$ (う) $=\sqrt{3}:3$
$=1:$ (い) ・・・③
➁、③から
$AE:CD=AB:$ (う) ・・・④
①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$
問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
高校受験対策・図形37
Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。
問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。
【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い) ・・・➁
$AB:$ (う) $=\sqrt{3}:3$
$=1:$ (い) ・・・③
➁、③から
$AE:CD=AB:$ (う) ・・・④
①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$
問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
単元:
#数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形37
Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。
問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。
【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い) ・・・➁
$AB:$ (う) $=\sqrt{3}:3$
$=1:$ (い) ・・・③
➁、③から
$AE:CD=AB:$ (う) ・・・④
①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$
問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
高校受験対策・図形37
Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。
問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。
【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い) ・・・➁
$AB:$ (う) $=\sqrt{3}:3$
$=1:$ (い) ・・・③
➁、③から
$AE:CD=AB:$ (う) ・・・④
①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$
問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
投稿日:2020.12.02