【高校受験対策/数学】図形-37 - 質問解決D.B.(データベース)

【高校受験対策/数学】図形-37

問題文全文(内容文):
高校受験対策・図形37

Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。

問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。

【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い)  ・・・➁
$AB:$ (う) $=\sqrt{3}:3$ 
$=1:$ (い)   ・・・③

➁、③から
$AE:CD=AB:$ (う)  ・・・④

①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$

問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形37

Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。

問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。

【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い)  ・・・➁
$AB:$ (う) $=\sqrt{3}:3$ 
$=1:$ (い)   ・・・③

➁、③から
$AE:CD=AB:$ (う)  ・・・④

①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$

問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
投稿日:2020.12.02

<関連動画>

【ただ一つ言えることは…】連立方程式:城北高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{1}{x-y}+\dfrac{2}{x+y}=\dfrac{5}{3} \\
\dfrac{2}{x-y}-\dfrac{1}{x+y}=\dfrac{5}{3}
\end{array}
\right.
\end{eqnarray}$
を解け.

城北高校過去問
この動画を見る 

【テスト対策・中2】3章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図のように、2点$A(1,3)、B(4,1)$がある。
$y$軸上に点$P$をとり、$AP+PB$の長さを考える。
$AP+PB$の長さが最も短くなるとき、点$P$の座標を求めなさい。

図は動画内参照
この動画を見る 

角度 2通りで解説 弘前学院聖愛

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照

弘前学院聖愛高等学校
この動画を見る 

【中学数学・数C】1次関数・平面ベクトル:座標平面上の三角形の面積

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面上のベクトル#1次関数#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
この動画を見る 

【数学】中2-7 単項式の乗法・除法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!

④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!

⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
この動画を見る 
PAGE TOP