【数Ⅱ】【複素数と方程式】高次方程式3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】高次方程式3 ※問題文は概要欄

問題文全文(内容文):
立方体の底面の縦を1㎝、横を2㎝それぞれ伸ばし、高さを1㎝縮めて直方体を作ったら、体積が50%増加した。もとの立方体の1辺の長さを求めよ。

2乗すると8+6iとなる複素数を求めよ。

3次方程式x³-3x²-2x+7=0の3つの解をα,β,γとするとき、次の式の値を求めよ。
(1)(1/α)+(1/β)+(1/γ)
(2)α²+β²+γ²
(3)α³+β³+γ³
(4)(1-α)(1-β)(1-γ)
(5)(α+β)(β+γ)(γ+α)
チャプター:

0:00 オープニング
0:04 問題1解説
4:14 問題2解説
7:19 問題3解説

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の底面の縦を1㎝、横を2㎝それぞれ伸ばし、高さを1㎝縮めて直方体を作ったら、体積が50%増加した。もとの立方体の1辺の長さを求めよ。

2乗すると8+6iとなる複素数を求めよ。

3次方程式x³-3x²-2x+7=0の3つの解をα,β,γとするとき、次の式の値を求めよ。
(1)(1/α)+(1/β)+(1/γ)
(2)α²+β²+γ²
(3)α³+β³+γ³
(4)(1-α)(1-β)(1-γ)
(5)(α+β)(β+γ)(γ+α)
投稿日:2025.02.26

<関連動画>

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

【高校数学】数Ⅲ-16 円と分点②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等式を満たす点$z$はどのような図形をえがくか.

①$\vert z-3i \vert =2$

②$\vert z+5-2i \vert =4$

③$\vert z-3 \vert=\vert z+1-i \vert$

④$\vert z+4i \vert =2\vert z+i \vert $
この動画を見る 

大学入試問題#396「基本問題」 慶應義塾大学(2009) #複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a,b$:実数
$(a+bi)^3=4+\mathit{i}$のとき、
$\displaystyle \frac{(a-b\mathit{i})^3}{2+3\mathit{i}}$の値を求めよ

出典:2009年慶應義塾大学 入試問題
この動画を見る 

弘前大(医)3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^3+3nx^2-(3n+2)=0$

(1)すべての自然数$n$において正の解はただ1つであることを示せ.
(2)正の解を$a_n$とする.$\displaystyle \lim_{n\to \infty} a_n$を求めよ.

弘前大(医)過去問
この動画を見る 

【数Ⅱ】【複素数と方程式】複素数の純虚数、共役 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの複素数a+biと2-3iの和が純虚数、積が実数となるように、実数a, bの値を定めよ。

虚数α、βの和、積がともに実数ならば、α、βは互いに共役であることを示せ。
この動画を見る 
PAGE TOP