【数Ⅱ】【複素数と方程式】高次方程式3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】高次方程式3 ※問題文は概要欄

問題文全文(内容文):
立方体の底面の縦を1㎝、横を2㎝それぞれ伸ばし、高さを1㎝縮めて直方体を作ったら、体積が50%増加した。もとの立方体の1辺の長さを求めよ。

2乗すると8+6iとなる複素数を求めよ。

3次方程式x³-3x²-2x+7=0の3つの解をα,β,γとするとき、次の式の値を求めよ。
(1)(1/α)+(1/β)+(1/γ)
(2)α²+β²+γ²
(3)α³+β³+γ³
(4)(1-α)(1-β)(1-γ)
(5)(α+β)(β+γ)(γ+α)
チャプター:

0:00 オープニング
0:04 問題1解説
4:14 問題2解説
7:19 問題3解説

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の底面の縦を1㎝、横を2㎝それぞれ伸ばし、高さを1㎝縮めて直方体を作ったら、体積が50%増加した。もとの立方体の1辺の長さを求めよ。

2乗すると8+6iとなる複素数を求めよ。

3次方程式x³-3x²-2x+7=0の3つの解をα,β,γとするとき、次の式の値を求めよ。
(1)(1/α)+(1/β)+(1/γ)
(2)α²+β²+γ²
(3)α³+β³+γ³
(4)(1-α)(1-β)(1-γ)
(5)(α+β)(β+γ)(γ+α)
投稿日:2025.02.26

<関連動画>

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 

ただの4次方程式 その2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^4+2x^2-400x=9991$
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
この動画を見る 

神奈川大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1-i}{\sqrt{ 3 }-i})^{12}$

出典:神奈川大学 過去問
この動画を見る 

4次方程式の解と係数の関係?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+2)(x+3)(x+4)=4$の4つの解を$\alpha,\beta,\delta,\zeta$とするとき,
$\alpha^3+\beta^3+\delta^3+\zeta^3$の値を求めよ.
この動画を見る 
PAGE TOP