【テスト対策 中3】5章-5 - 質問解決D.B.(データベース)

【テスト対策 中3】5章-5

問題文全文(内容文):
右の図のように、平行四辺形$ABCD$において、
辺$AB$上の$AE:EB=2:1$である点を$E$、辺$AD$の中点を$F$、
線分$AC$と線分$EF$との交点を$G$とする。
$\angle AFE = 30° ∠BCE=11°、CG=4cm$のとき、次の問いに答えなさい。

①$∠CEF$の大きさを求めなさい。

②線分$AG$の長さを求めなさい。

図は動画内参照
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、平行四辺形$ABCD$において、
辺$AB$上の$AE:EB=2:1$である点を$E$、辺$AD$の中点を$F$、
線分$AC$と線分$EF$との交点を$G$とする。
$\angle AFE = 30° ∠BCE=11°、CG=4cm$のとき、次の問いに答えなさい。

①$∠CEF$の大きさを求めなさい。

②線分$AG$の長さを求めなさい。

図は動画内参照
投稿日:2017.09.14

<関連動画>

【中学数学】2次関数の演習~変化の割合の問題~ 4-3.5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=ax^2$は$x$の値が1から3まで増加するときの変化の割合が6である。
この関数について、$x$の値が3から5まで増加するときの変化の割合を求めよ。
この動画を見る 

【高校受験対策/数学】死守-79

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79

①$-3-(-7)$を計算しなさい。

②$8a^3b^5÷4a^2b^3$を計算しなさい。

③$x^2-8x+16$を因数分解しなさい。

④$a=\frac{2b-c}{5}$を$c$について解きなさい。

⑤二次方程式$x^2+5x+2=0$を解きなさい。

⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。

⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。

平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。

ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$

⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。

⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。

ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る 

【中学数学】相似の問題演習~一緒に解いて考え方を身に付けよう~【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【ひらめきと経験と…!】図形:慶応義塾高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABCにおいて、AB=AC,BC=2,\angle BAC=36^{ \circ }$
$のとき、ABの長さを求めよ。$
この動画を見る 

【高校受験対策】数学-図形23

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形23

右の図において、$△ABC$は$AB=AC$の二等辺三角形であり、 点$D$、$E$はそれぞれ辺$AB$、$AC$の中点である。
また、点$F$は直線DE上の点であり、$EF=DE$である。 このとき次の問1、問2に答えなさい。

問1
$AF=BE$であることを証明しなさい。

問2
線分$BF$と線分$CE$との交点を$G$とする。
$△AEF$において辺AFを底辺とするときの高さを$x$、$△BGE$において辺$BE$を底辺とするときの高さを$y$とするとき、$x:y$を求めなさい。
この動画を見る 
PAGE TOP