大学入試問題#903「記述の仕方が問われる」 #信州大学後期(2024) - 質問解決D.B.(データベース)

大学入試問題#903「記述の仕方が問われる」 #信州大学後期(2024)

問題文全文(内容文):
$a_1=3$とする
$\displaystyle \frac{1}{4}a_n+\displaystyle \frac{3}{2} \lt a_n+1 \lt \displaystyle \frac{1}{3}a_n+\displaystyle \frac{4}{3}$
を満たすとき、$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2024年信州大学後期
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$a_1=3$とする
$\displaystyle \frac{1}{4}a_n+\displaystyle \frac{3}{2} \lt a_n+1 \lt \displaystyle \frac{1}{3}a_n+\displaystyle \frac{4}{3}$
を満たすとき、$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2024年信州大学後期
投稿日:2024.08.13

<関連動画>

【高校数学】 数Ⅱ-166 不定積分①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不定積分を求めよう。

①$\int x^2 dx$

②$\int x^3 dx$

③$\int (10x-5) dx$

④$\int (3x^2-4) dx$

⑤$\int (3t^2+6t) dt$

⑥$\int (x-1)(x+2) dx$

⑦$\int (3x+2)^2 dx$

⑧$\int (x-5)^3 dx$
この動画を見る 

佐賀大(医)3次方程式の解の公式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha,\beta$は正の実数である.

(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.

(2)$x^3+6x-2=0$の実数解を求めよ.

2020佐賀大(医)過去問
この動画を見る 

対数の近似値

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10}2\lt 0.308$を示せ.
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(2)$2(\cos\theta-\sin\theta)^2=1$を満たす$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めると$\boxed{\ \ イ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

【数学Ⅱ/三角関数】三角方程式②

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\tan(\theta -\displaystyle \frac{\pi}{4})=\displaystyle \frac{1}{\sqrt{ 3 }}$

(2)
$\tan(\theta -\displaystyle \frac{\pi}{6})=-1$
この動画を見る 
PAGE TOP