2023共通テスト数学 1A 第1問 - 質問解決D.B.(データベース)

2023共通テスト数学 1A 第1問

問題文全文(内容文):
第一問,
$\vert x+6 \vert \leqq 2$
$\Box \leqq x \leqq \Box$
$\vert (1-\sqrt3)(a-b)(c-d)+6 \vert 2$
$\Box \leqq (a-b)(c-d) \leqq \boxed{①}$
$(a-b)(c-d)=①$でさらに$(a-c)(b-d)=-3+\sqrt3 $なら $(a-d)(c-b)=\Box $

20232共通テスト過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)#共通テスト
指導講師: 鈴木貫太郎
問題文全文(内容文):
第一問,
$\vert x+6 \vert \leqq 2$
$\Box \leqq x \leqq \Box$
$\vert (1-\sqrt3)(a-b)(c-d)+6 \vert 2$
$\Box \leqq (a-b)(c-d) \leqq \boxed{①}$
$(a-b)(c-d)=①$でさらに$(a-c)(b-d)=-3+\sqrt3 $なら $(a-d)(c-b)=\Box $

20232共通テスト過去問
投稿日:2023.01.15

<関連動画>

【高校数学】  数Ⅰ-88  正弦定理と余弦定理①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$

②$a=4,b=\sqrt{ 21 },C=5$のとき$B$

③$b=60°,a:b=1:3$のとき$\sin A$
この動画を見る 

ごめんなさい

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
b>a>0
a^2=2+√3
a^2=2-√3
(1)abの値を求めよ。
(2)a-b
この動画を見る 

福井大 2次方程式と複素平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ

出典:2000年福井大学 過去問
この動画を見る 

cosとは何か?から解説!!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$cos1°+cos2°+cos3°+ \cdots +cos179° = ?$
この動画を見る 

数学「大学入試良問集」【6−2 隣接する内接円】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3辺$AB,BC,CA$の長さがそれぞれ$7,6,5$の三角形$ABC$において、三角形$ABC$の面積を$S$、三角形$ABC$の内接円$I$のを半径$r$とする。
さらに、2辺$AB,BC$および内接円$I$に接する円の半径を$r_1$とし、半径$r_1$の円は、内接円$I$とは異なるものとする。
(1)$\cos\ B,\sin\displaystyle \frac{B}{2}$の値を求めよ。
(2)$S,r$の値を求めよ。
(3)$\sin\displaystyle \frac{B}{2}$を$r,r_1$を用いて表せ。
(4)$r_1$の値を求めよ。
この動画を見る 
PAGE TOP