4次方程式 - 質問解決D.B.(データベース)

4次方程式

問題文全文(内容文):
解け
$(6x-1)(3x-1)(2x-1)(x-1)+x^{2}-25 = 0$
単元: #剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
解け
$(6x-1)(3x-1)(2x-1)(x-1)+x^{2}-25 = 0$
投稿日:2023.09.10

<関連動画>

気象大学校 3次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#気象大学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
気象大学校過去問題
$x^3+x^2-x+a=0$ (a実数)は$cosθ+isinθ(0^\circ <θ<90^\circ )$を解にもつ。
θ,a,すべての解を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題026〜神戸大学2016年度理系数学第5問〜極方程式と媒介変数表示

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
極方程式で表されたxy平面上の曲線$r=1+\cos\theta(0 \leqq \theta \leqq 2\pi)$をCとする。
(1)曲線C上の点を直交座標(x,y)で表したとき、$\frac{dx}{d\theta}=0$となる点、および
$\frac{dy}{d\theta}=0$となる点の直交座標を求めよ。
(2)$\lim_{\theta \to \pi}\frac{dy}{dx}$を求めよ。
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。

2016神戸大学理系過去問
この動画を見る 

4次方程式 展開する?しない?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(1+x^2)^2=4x(1-x^2)$
この動画を見る 

法政大・お茶の水女子大 高次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^6+\alpha^5-9\alpha^4-10\alpha^3-9\alpha^2+\alpha+1=0$
6つの解を求めよ

$x^4-6x^3-x^2+18x+9=0$
4つの解を求めよ

出典:法政大学 お茶の水女子大学 過去問
この動画を見る 

バングラデシュ数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^5+y^5=31
\end{array}
\right.
\end{eqnarray}
$
この動画を見る 
PAGE TOP