4次方程式 - 質問解決D.B.(データベース)

4次方程式

問題文全文(内容文):
解け
$(6x-1)(3x-1)(2x-1)(x-1)+x^{2}-25 = 0$
単元: #剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
解け
$(6x-1)(3x-1)(2x-1)(x-1)+x^{2}-25 = 0$
投稿日:2023.09.10

<関連動画>

【数Ⅱ】複素数と方程式:3次方程式が2重解を持つ条件:x³+6x²+ax+b=0が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(2)〜高次式の因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)整式$x^5+x^4+x^3+x^2+x+1$は、整数を係数とし、次数が1以上で、
かつ最高次の項の係数が1であるような3つの整式$\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }$の積に
因数分解せよ。

2022慶應義塾大学医学部過去問
この動画を見る 

連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{ab}{a+b}=1 \\
\dfrac{bc}{b+c}=2 \\
\dfrac{ca}{c+a}=3 \\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

ただの4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$(x-1)(x-3)(x-9)(x-27)=56x^2$
この動画を見る 

Japanese Mathematics Olympiad 2001

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これらの方程式に適合する実数xを見つけてください
$x^5+2x^4-x^3-5x^2-10x+5=0$
$x^6+4x^5+3x^4-6x^3-20x^2-15x+5=0$
この動画を見る 
PAGE TOP