#11 鬼の定積分 By英語orドイツ語シはBかHか さん - 質問解決D.B.(データベース)

#11 鬼の定積分 By英語orドイツ語シはBかHか さん

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
投稿日:2023.10.29

<関連動画>

福田の数学〜東京慈恵会医科大学2025医学部第2問〜定積分と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

次の問いに答えよ。ただし、対数は自然対数とする。

(1)$3$以上の自然数$n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$

(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。

(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る 

大学入試問題#781「絶対値付きの積分は、なんか苦手!」 久留米大学医学部(2005) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$

出典:2005年久留米大学医学部 入試問題
この動画を見る 

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{log\ x}{x^2} dx$

出典:2014年奈良教育大学
この動画を見る 

【数Ⅱ】【微分法と積分法】1/6公式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{α}^β(x-α)(x-β)dx=-\dfrac{1}{6}(β-α)³$

を用いて、次の定積分を求めよ。
(1)$\int_{-1}^2(x²-x-2)dx$
(2)$\int_{1-\sqrt 2}^{1+\sqrt2}(x²-2x-1)dx$
(3)$\int_{3}^4(14x-24-2x²)dx $
この動画を見る 
PAGE TOP