福田の数学〜名古屋大学2024年理系第4問〜反復試行の確率と漸化式と定積分の計算 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2024年理系第4問〜反復試行の確率と漸化式と定積分の計算

問題文全文(内容文):
$\Large\boxed{4}$ 袋の中にいくつかの赤玉の白玉が入っている。すべての玉に対する赤玉の割合を$p$(0≦$p$≦1)とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。
試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$とおく。
(1)$n$≧2に対して、$f(1)$と$f(2)$を求めよ。
(2)$k$=1,2,...,$n$に対して、等式
$f(k)$=$\displaystyle\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3)自然数$k$に対して、定積分$I$=$\displaystyle\int_0^{\frac{1}{2}}x^k(1-x)^kdx$ を求めよ。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 袋の中にいくつかの赤玉の白玉が入っている。すべての玉に対する赤玉の割合を$p$(0≦$p$≦1)とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。
試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$とおく。
(1)$n$≧2に対して、$f(1)$と$f(2)$を求めよ。
(2)$k$=1,2,...,$n$に対して、等式
$f(k)$=$\displaystyle\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3)自然数$k$に対して、定積分$I$=$\displaystyle\int_0^{\frac{1}{2}}x^k(1-x)^kdx$ を求めよ。
投稿日:2024.05.27

<関連動画>

【高校数学】確率の例題~順列と組合せ使おうぜ~ 2-1.5【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
赤玉5個、白玉4個、青玉3個が入った袋から、玉を3個同時に取り出すとき、
次の確率を求めよ。
(a)すべての赤玉が出る確率
(b)赤玉1個と白玉2個が出る確率
(c)どの色の玉も出る確率

-----------------

2⃣
40人のクラスで委員長と副委員長を選ぶとき、特定の4人の中の2人が選ばれる
確率を求めよ。

-----------------

3⃣
SUNDAYの6文字を1列に並べるとき、次の確率を求めよ。
(a)両端が母音である確率
(b)SとYが隣り合う確率
(c)SがYよりも左側にある確率
この動画を見る 

桐朋 整数問題

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bをそれぞれ1ケタの自然数とする。$2^a \times 3^b$が72の倍数とならないa,bの組は何通り?

桐朋高等学校
この動画を見る 

正方形何個できる? 福岡大附属大濠

アイキャッチ画像
単元: #数A#場合の数と確率#図形の性質#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
縦横等間隔に並ぶ16個の点
4つの点を選んで正方形をつくる。
何通りできる?
*図は動画内参照
福岡大附属大濠高等学校
この動画を見る 

【理数個別の過去問解説】1993年度京都大学 数学 理系後期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n\geqq 3$とする。$1,2,...,n$のうちから重複を許して6個の数字を選びそれらを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよう。
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(2)〜一列に並べる(前編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ A,B,C,D,E,F,Gを一列に並べる。
(1)AとBが両端にくるような並び方は何通りあるか。
(2)A,B,Cが隣り合うような並び方は何通りあるか。
(3)A,B,Cが隣り合わないような並び方は何通りあるか。
(4)A,B,Cがこの順に並ぶような並び方は何通りあるか。
(5)この順列を辞書順に並べたとき、CBFDAGEは何番目か。
この動画を見る 
PAGE TOP