広島大 微分積分 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

広島大 微分積分 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
広島大学過去問題
C:f(x)=x34x2+5x
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
C:f(x)=x34x2+5x
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
投稿日:2018.09.23

<関連動画>

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
sin3x=3sinx4sin3x
cos3x=3cosx+4cos3x
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数θを、π3<θ<π2cos3θ=1116を同時に満たすものとする。このとき、cosθを求めよ。
(3)(2)のθに対して、定積分0θsin5xdxを求めよ。
【高知大学 2023】
この動画を見る 

#数検準1級1次_4#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1x(x2+1)dx

出典:数検準1級1次
この動画を見る 

大学入試問題#821「王道問題」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
022x+3x2+2x+4dx

出典:2022年筑波大学
この動画を見る 

【数Ⅱ】積分計算で計算ミスを減らすテクニック

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
∫[3-5](x-3)(x-6)dxを求めよ
この動画を見る 

大阪大 区分求積法 ヨビノリ病欠 代講ヤス

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
an=k=1n[2n2k2]n2

limnanを求めよ

出典:2000年大阪大学 過去問
この動画を見る 
PAGE TOP preload imagepreload image