福田の数学〜中央大学2021年理工学部第1問〜斜回転 - 質問解決D.B.(データベース)

福田の数学〜中央大学2021年理工学部第1問〜斜回転

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 放物線C:y=x^2上の点(a,\ a^2) (a \gt 0)における法線lの方程式をy=f(x)\\
とおくと、f(x)=\boxed{\ \ ア\ \ }となる。またCとlの交点のうちPと異なる方の点Qを\\
求めると、Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)となる。以下、Cとlで囲まれた部分をDとし、\\
Dをlの周りに1回転して得られる回転体の体積V(a)を求める。Dに含まれるl上\\
の点をR(t,\ f(t)) (\boxed{\ \ イ\ \ } \leqq t \leqq a)とおく。Rを通りlに垂直な直線は\\
y=2a(x-t)+f(t)で与えられる。この直線とy=x^2の2つの交点のうち\\
Dに含まれる方の点Sのx座標はx=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}\ となる。このとき\\
線分RSの長さr=g(t)はg(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})となる。\\
線分QRの長さs=h(t)はh(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })で与えられるので、\\
V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt\\
=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt\\
となる。ここでu=\sqrt{a-t}とおいて置換積分を行えば\\
V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }\\
が求まる。さらに、a \gt 0の範囲でaを動かすとき、\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty\\
であり、V(a)を最小にするaの値はa=\boxed{\ \ キ\ \ }である。\\
\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
ⓐ-\frac{2}{a}(x-a)+a^2 ⓑ-\frac{1}{a}(x-a)+a^2 ⓒ-\frac{1}{2a}(x-a)+a^2 ⓓ-2a(x-a)+a^2\\
\\
\\
\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }\ の解答群\\
ⓐ-\frac{a^2-1}{a} ⓑ-\frac{2a^2-1}{2a} ⓒ-\frac{a^2+1}{a} ⓓ-\frac{2a^2+1}{2a}\\
ⓔ\frac{\sqrt{a^2+4}}{2} ⓕ\sqrt{a^2+1} ⓖ\sqrt{4a^2+1} ⓗ2a\\
ⓘ\frac{\sqrt{4a^2+1}}{2a} ⓙ\frac{\sqrt{a^2+4}}{a} ⓚ\frac{\sqrt{a^2+1}}{a} ⓛ\frac{\sqrt{a^2+1}}{2a}\\
ⓜ\sqrt{\frac{2a^2+1}{2a}} ⓝ\sqrt{\frac{4a^2+1}{2a}} ⓞ\sqrt{\frac{2a^2+1}{a}} ⓟ\sqrt{\frac{4a^2+1}{a}}\\
\\
\\
\boxed{\ \ カ\ \ }\ の解答群\\
ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi\\
\\
\\
\boxed{\ \ キ\ \ }\ の解答群\\
ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4
\end{eqnarray}

2021中央大学理工学部過去問
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 放物線C:y=x^2上の点(a,\ a^2) (a \gt 0)における法線lの方程式をy=f(x)\\
とおくと、f(x)=\boxed{\ \ ア\ \ }となる。またCとlの交点のうちPと異なる方の点Qを\\
求めると、Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)となる。以下、Cとlで囲まれた部分をDとし、\\
Dをlの周りに1回転して得られる回転体の体積V(a)を求める。Dに含まれるl上\\
の点をR(t,\ f(t)) (\boxed{\ \ イ\ \ } \leqq t \leqq a)とおく。Rを通りlに垂直な直線は\\
y=2a(x-t)+f(t)で与えられる。この直線とy=x^2の2つの交点のうち\\
Dに含まれる方の点Sのx座標はx=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}\ となる。このとき\\
線分RSの長さr=g(t)はg(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})となる。\\
線分QRの長さs=h(t)はh(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })で与えられるので、\\
V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt\\
=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt\\
となる。ここでu=\sqrt{a-t}とおいて置換積分を行えば\\
V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }\\
が求まる。さらに、a \gt 0の範囲でaを動かすとき、\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty\\
であり、V(a)を最小にするaの値はa=\boxed{\ \ キ\ \ }である。\\
\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
ⓐ-\frac{2}{a}(x-a)+a^2 ⓑ-\frac{1}{a}(x-a)+a^2 ⓒ-\frac{1}{2a}(x-a)+a^2 ⓓ-2a(x-a)+a^2\\
\\
\\
\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }\ の解答群\\
ⓐ-\frac{a^2-1}{a} ⓑ-\frac{2a^2-1}{2a} ⓒ-\frac{a^2+1}{a} ⓓ-\frac{2a^2+1}{2a}\\
ⓔ\frac{\sqrt{a^2+4}}{2} ⓕ\sqrt{a^2+1} ⓖ\sqrt{4a^2+1} ⓗ2a\\
ⓘ\frac{\sqrt{4a^2+1}}{2a} ⓙ\frac{\sqrt{a^2+4}}{a} ⓚ\frac{\sqrt{a^2+1}}{a} ⓛ\frac{\sqrt{a^2+1}}{2a}\\
ⓜ\sqrt{\frac{2a^2+1}{2a}} ⓝ\sqrt{\frac{4a^2+1}{2a}} ⓞ\sqrt{\frac{2a^2+1}{a}} ⓟ\sqrt{\frac{4a^2+1}{a}}\\
\\
\\
\boxed{\ \ カ\ \ }\ の解答群\\
ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi\\
\\
\\
\boxed{\ \ キ\ \ }\ の解答群\\
ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4
\end{eqnarray}

2021中央大学理工学部過去問
投稿日:2021.08.12

<関連動画>

文系積分の基本 中央大(文学部)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021中央大学過去問題
$y=x(x-1)^2 \cdots$①
$y=kx \cdots$②
①と②は異なる3点で交わり、①と②とで囲まれる2つの部分の面積が等しい
kの値
この動画を見る 

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}

2022京都大学文系過去問
この動画を見る 

琉球大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
琉球大学過去問題
-2<a<2
$y=x^2+ax+1$に原点から引いた2本の接線の接点をP,Qとする。
(1)2つの接点P,Qの座標を求めよ。
(2)2本の接線と放物線で囲まれた図形の面積
この動画を見る 

青山学院大 微分の基礎

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
青山学院大学過去問題
$C:y=x^2$
A(-1,1),B(4,16)
放物線C上にx座標が
$t(-1<t<4)$である点P
直線AB上にx座標がtである点Qととる。
△APQの面積の最大値とそのときのtの値
この動画を見る 

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、放物線y=\frac{1}{2}x^2をC_1、放物線y=-(x-a)^2+bをC_2とする。\\
(1)C_1とC_2が異なる2点で交わるためのa,bの条件を求めよ。\\
以下、C_1とC_2は異なる2点で交わるとし、C_1とC_2で囲まれた図形の面積をSとする。\\
(2)S=16となるためのa,bの条件を求めよ。\\
(3)a,bはb \leqq a+3を満たすとする。このときSの最大値を求めよ。
\end{eqnarray}

2022名古屋大学文系過去問
この動画を見る 
PAGE TOP